Soham Gadgil*, Alex J. DeGrave*, Roxana Daneshjou, and Su-In Lee. "Discovering mechanisms underyling medical AI prediction of protected attributes." Preprint at medRxiv. 2024.
Chanwoo Kim, Soham U. Gadgil, Alex J. DeGrave, Jestofunmi A. Omiye, Zhuo Ran Cai, Roxana Daneshjou*, and Su-In Lee*. "Transparent medical image AI via an image-text foundation model grounded in medical literature." Nature Medicine 30, 1154-1165. 2024.
Alex J. DeGrave, Zhuo Ran Cai, Joseph D. Janizek, Roxana Daneshjou*, and Su-In Lee*. "Auditing the Inference processes of medical-image classifiers by leveraging generative AI and the expertise of physicians." Nature Biomedical Engineering, 2023.
John D. Russo*, She Zhang*, Jeremy M. G. Leung*, Anthony T. Bogetti*, Jeff P. Thompson, Alex J. DeGrave, Paul A. Torrillo, A. J. Pratt, Kim F. Wong, Junchao Xia, Jeremy Copperman, Joshua L. Adelman, Matthew C. Zwier, David N. LeBard, Daniel M. Zuckerman, and Lillian T. Chong. "WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and Analysis of Longer-Timescale Applications." J. Chem. Theory Comput. 2022.
Alex J. DeGrave*, Joseph D. Janizek*, and Su-In Lee. "Course Corrections for Clinical AI". Kidney360 2 (2), 2021.
Alex J. DeGrave*, Joseph D. Janizek*, and Su-In Lee. "AI for radiographic COVID-19 detection selects shortcuts over signal." Nature Machine Intelligence 3, 610-619. 2021.
Alex J. DeGrave*, Anthony T. Bogetti*, and Lillian T. Chong. "The RED scheme: Rate-constant estimation from pre-steady state weighted ensemble simulations." J. Chem. Phys. 154, 114111. 2021.
Anthony T. Bogetti, Hannah E. Piston, Jeremy M. G. Leung, Chino C. Cabalteja, Darian T. Yang, Alex J. DeGrave, Karl T. Debiec, David S. Cerutti, David A. Case, W. Seth Horne, and Lillian T. Chong. "A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics." J. Chem. Phys. 153, 064101. 2020.
Joseph D. Janizek, Gabriel Erion, Alex J. DeGrave, and Su-In Lee. "An adversarial approach for the robust classification of penumonia from chest radiographs." CHIL '20: Proceedings of the ACM Conference on Health, Inference, and Learning. p. 69-79. 2020.
Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. "From local explanations to global understanding with explainable AI for trees." Nature Machine Intelligence. 2, 56-67. 2020.
Anthony T. Bogetti*, Barmak Mostofian*, Alex Dickson*, AJ Pratt*, Ali S. Saglam*, Page O. Harrison*, Joshua L. Adelman, Max Dudek, Paul A. Torrillo, Alex J. DeGrave, Upendra Adhikari, Matthew C. Zwier, Daniel M. Zuckerman, and Lillian T. Chong. "A Suite of Tutorials for the WESTPA Rare-Events Sampling Software." Living Journal of Computational Molecular Science 1, 2. 2019.
Alex J. DeGrave*, Jeung-Hoi Ha*, Stewart N. Loh, and Lillian T. Chong. "Large enhancement of response times of a protein conformational switch by computation design." Nature Communications 9, 1013. 2018.
*equal contribution